In the past decade, various exact balancing-based weighting methods were introduced to the causal inference literature. Exact balancing alleviates the extreme weight and model misspecification issues that may incur when one implements inverse probability weighting. It eliminates covariate imbalance by imposing balancing constraints in an optimization problem. The optimization problem can nevertheless be infeasible when there is bad overlap between the covariate distributions in the treated and control groups or when the covariates are high-dimensional. Recently, approximate balancing was proposed as an alternative balancing framework, which resolves the feasibility issue by using inequality moment constraints instead. However, it can be difficult to select the threshold parameters when the number of constraints is large. Moreover, moment constraints may not fully capture the discrepancy of covariate distributions. In this paper, we propose Mahalanobis balancing, which approximately balances covariate distributions from a multivariate perspective. We use a quadratic constraint to control overall imbalance with a single threshold parameter, which can be tuned by a simple selection procedure. We show that the dual problem of Mahalanobis balancing is an l_2 norm-based regularized regression problem, and establish interesting connection to propensity score models. We further generalize Mahalanobis balancing to the high-dimensional scenario. We derive asymptotic properties and make extensive comparisons with existing balancing methods in the numerical studies.


翻译:在过去十年中,对因果推断文献采用了各种精确的平衡加权法。 精确的平衡减轻了当执行反概率加权时可能出现的极端重量和模型错误区分问题。 它通过在优化问题中实行平衡限制,消除了共变不平衡。 然而,当处理和控制组的共变分布发生差错或共变高度时,优化问题可能不可行。 最近, 提出了近似平衡作为替代平衡框架, 通过使用不平等时刻限制解决可行性问题。 但是, 在限制数量大时,很难选择临界值参数。 此外, 暂时限制可能无法完全反映共变分布的差异。 在本文件中, 我们建议马哈拉诺比平衡, 从多变角度来大致平衡共变分布。 我们用一个四面限制来控制总体不平衡, 单一临界参数可以通过简单的选择程序加以调整。 我们表明, 马哈诺比平衡的双重问题在基于l_ 2 规范的临界值中是一个标准值参数 。 此外,我们建议马哈拉诺比斯 将现有的平衡性分析模式与现有的高度分析模式联系起来。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员