Synthesizing controllable motion for a character using deep learning has been a promising approach due to its potential to learn a compact model without laborious feature engineering. To produce dynamic motion from weak control signals such as desired paths, existing methods often require auxiliary information such as phases for alleviating motion ambiguity, which limits their generalisation capability. As past poses often contain useful auxiliary hints, in this paper, we propose a task-agnostic deep learning method, namely Multi-scale Control Signal-aware Transformer (MCS-T), with an attention based encoder-decoder architecture to discover the auxiliary information implicitly for synthesizing controllable motion without explicitly requiring auxiliary information such as phase. Specifically, an encoder is devised to adaptively formulate the motion patterns of a character's past poses with multi-scale skeletons, and a decoder driven by control signals to further synthesize and predict the character's state by paying context-specialised attention to the encoded past motion patterns. As a result, it helps alleviate the issues of low responsiveness and slow transition which often happen in conventional methods not using auxiliary information. Both qualitative and quantitative experimental results on an existing biped locomotion dataset, which involves diverse types of motion transitions, demonstrate the effectiveness of our method. In particular, MCS-T is able to successfully generate motions comparable to those generated by the methods using auxiliary information.


翻译:利用深层学习合成一个字符的可控性运动是一个很有希望的方法,因为它有可能学习不费力的特点工程的紧凑模型。为了从弱控制信号(如理想路径)中产生动态运动,现有方法往往需要辅助信息,例如减缓运动模糊性的阶段,从而限制其概括性能力。由于过去往往包含有用的辅助提示,我们在本文件中提议了一个任务-不可知的深层次学习方法,即多尺度控制信号-觉变异器(MCS-T),其关注基础是编码-解密器结构,以发现辅助信息,用于合成可控动作,而不需要阶段等辅助信息。具体地说,为了从弱控制信号产生动态动态,例如减缓动作的阶段,现有方法需要适应性地构建一个特性过去所形成的运动模式,并带有多尺度骨架,而由控制信号驱动的解析器进一步综合和预测特性状态,即多尺度控制信号-感知识变变变变器(MCS-T),因此,它有助于缓解低响应率和缓慢转变的问题,这往往是在常规方法下发生的,不需要使用辅助信息(如阶段)辅助信息。具体设计,用定性和定量实验性模型,两种方法都显示一种可比较性试验方法,即产生可变动。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员