Root causal analysis seeks to identify the set of initial perturbations that induce an unwanted outcome. In prior work, we defined sample-specific root causes of disease using exogenous error terms that predict a diagnosis in a structural equation model. We rigorously quantified predictivity using Shapley values. However, the associated algorithms for inferring root causes assume no latent confounding. We relax this assumption by permitting confounding among the predictors. We then introduce a corresponding procedure called Extract Errors with Latents (EEL) for recovering the error terms up to contamination by vertices on certain paths under the linear non-Gaussian acyclic model. EEL also identifies the smallest sets of dependent errors for fast computation of the Shapley values. The algorithm bypasses the hard problem of estimating the underlying causal graph in both cases. Experiments highlight the superior accuracy and robustness of EEL relative to its predecessors.
翻译:根因果分析试图确定引发不想要的结果的最初扰动。 在先前的工作中,我们使用预测结构方程模型诊断结果的外源错误术语定义了特定样本的疾病根源。我们使用沙普利值严格量化预测性。然而,推断根本原因的相关算法假定没有潜在的混淆。我们允许预测者混淆,放松这一假设。然后我们引入了一个相应的程序,称为“内端抽取错误”(EEL),用于在直线非高原周期模型下,通过某些路径的脊椎恢复错误,直至被污染。EL还确定了快速计算沙普利值时最小的自定义错误。该算法绕过了这两个案例中估算基本因果图的难题。实验突出了EL相对于其前身的高度准确性和稳健性。