Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
翻译:推断因果结构会产生一个组合式的搜索问题,通常涉及通过评分或独立测试来评价结构。 由此进行的搜索成本高昂, 设计适当的得分或测试以捕捉先前的知识是困难的。 在这项工作中, 我们提议对因果结构学习进行摊分。 我们不研究结构, 而是训练一个变式推论模型, 直接预测从观察或干预数据中得出的因果结构。 这使得我们的推论模型能够获取特定领域的因果发现偏向, 仅来自模拟器生成的数据, 绕过适当得分函数的手动工程和图形的搜索。 我们的推论模型的结构可以模仿结构学习中的统计效率至关重要的变异性, 这有助于将问题普遍化到比培训期间要大得多的情况。 在合成数据和半合成基因表达数据方面, 我们的模型在面临大幅分布变化和显著超出现有算法时, 特别是在具有挑战的基因组域域中, 其代码和模型可以公开查阅 : https://github.com/larslorsch/avicci。