Recently it has been shown that Maximum Mean Discrepancy (MMD) based regularization for optimal transport (OT), unlike the popular Kullback Leibler (KL) based regularization, leads to a dimension-free bound on the sample complexity of estimation. On the other hand, interesting classes of metrics like the Generalized Wasserstein (GW) metrics and the Gaussian-Hellinger-Kantorovich (GHK) metrics are defined using Total Variation and KL based regularizations, respectively. It is, however, an open question if appropriate metrics could be defined using the sample-efficient MMD regularization. In this work, we not only bridge this gap, but further consider a generic family of regularizers based on Integral Probability Metrics (IPMs), which include MMD as a special case. We present novel IPM regularized $p$-Wasserstein style OT formulations and prove that they indeed induce metrics over measures. While some of these novel metrics can be interpreted as infimal convolutions of IPMs, interestingly, others turn out to be the IPM-analogues of GW and GHK metrics. Finally, we present finite sample-based formulations for estimating the squared-MMD regularized metric and the corresponding barycenter. We empirically study other desirable properties of the proposed metrics and show their applicability in various machine learning applications.
翻译:最近,人们已经表明,基于最大平均值差异(MMD)的优化运输规范(OT)不同于流行的基于 Kullback Leiberr(KL) 的常规化(OT),它与流行的基于 Kullback Leiber(KL) 的常规化(KL) 的常规化(MD) 不同,它导致一个无维的界限,取决于估算的抽样复杂性。另一方面,令人感兴趣的是,诸如通用的瓦西斯坦(GW) 指标(GW) 和高西安-赫尔林杰-坎托罗维奇(GHK) 标准(GH) 等指标类别,分别使用全变换和基于KLL的规范化(GO) 。然而,有些新的指标可以被解释为IPMs 样本化(IPM) 标准(MMD),有趣的是其他标准(IMM) 和标准(IPMD) 标准(我们目前定期的IMD) 和标准(IMMD) 标准(IPMD) 和标准(IM-IPMD) ) 标准(我们目前定期的模型(IM-IPMD) 和标准(IM-IBID) ) 和标准(IPMD-ID) ) 的模型(IBIBI-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-