Neural operators are a type of deep architecture that learns to solve (i.e. learns the nonlinear solution operator of) partial differential equations (PDEs). The current state of the art for these models does not provide explicit uncertainty quantification. This is arguably even more of a problem for this kind of tasks than elsewhere in machine learning, because the dynamical systems typically described by PDEs often exhibit subtle, multiscale structure that makes errors hard to spot by humans. In this work, we first provide a mathematically detailed Bayesian formulation of the ''shallow'' (linear) version of neural operators in the formalism of Gaussian processes. We then extend this analytic treatment to general deep neural operators using approximate methods from Bayesian deep learning. We extend previous results on neural operators by providing them with uncertainty quantification. As a result, our approach is able to identify cases, and provide structured uncertainty estimates, where the neural operator fails to predict well.
翻译:神经操作器是一种深层次的结构,它学会解答(即学习非线性溶解操作器)部分差异方程(PDEs) 。 这些模型的当前先进状态并不提供明确的不确定性量化。 与机器学习中其他地方相比,对于这类任务来说,这可以说是一个更大的问题,因为PDEs通常描述的动态系统往往表现出微妙的、多尺度的结构,使得人类难以发现错误。 在这项工作中,我们首先提供了高斯进程形式主义中神经操作器“ shallow” (线性) 版本的数学详细的巴耶斯配方。 然后,我们利用巴耶斯深层学习的近似方法,将这种分析处理方法推广到普通的深神经操作器。 我们通过向神经操作器提供不确定性的量化方法,扩展了以前对神经操作器的结果。 因此,我们的方法能够辨别案例,并提供结构化的不确定性估计,而神经操作器无法预测在哪里。