Objective: We propose a formal framework for modeling surgical tasks using a unified set of motion primitives (MPs) as the basic surgical actions to enable more objective labeling, aggregation of different datasets, and training generalized models for surgical action recognition. Methods: We use our framework to create the COntext and Motion Primitive Aggregate Surgical Set (COMPASS), including six dry-lab surgical tasks from three publicly-available datasets (JIGSAWS, DESK, and ROSMA) with kinematic and video data and context and MP labels. Methods for labeling surgical context and automatic translation to MPs are presented. We propose the Leave-One-Task-Out (LOTO) cross validation method to evaluate a model's ability to generalize to an unseen task. Results: Our context labeling method achieves near-perfect agreement between consensus labels from crowd-sourcing and expert surgeons. Segmentation of tasks to MPs enables the generation of separate left and right transcripts and significantly improves LOTO performance. We find that MP segmentation models perform best if trained on tasks with the same context and/or tasks from the same dataset. Conclusion: The proposed framework enables high quality labeling of surgical data based on context and fine-grained MPs. Modeling surgical tasks with MPs enables the aggregation of different datasets for training action recognition models that can generalize better to unseen tasks than models trained at the gesture level. Significance: Our formal framework and aggregate dataset can support the development of models and algorithms for surgical process analysis, skill assessment, error detection, and autonomy.
翻译:目标:我们提出一个正式框架,用于模拟外科任务,使用一套统一的运动原始数据和背景及MP标签,作为基本的外科行动,以便更客观地标注、汇总不同数据集,并培训通用外科行动识别模式。方法:我们使用我们的框架,创建COntext和运动原始综合外科组(COMPASS),包括由三种公开可得的数据集(JIGSAWS、DESK和ROSMA)提供的6个干拉外科任务,其中包括6个干拉外科任务,配有运动和视频原始数据及背景和MP的标签。我们介绍了将外科背景和自动翻译标为MPs的方法。我们提议了“One-One-Task-Out”(LOTO)交叉验证方法,以评价模型的通用能力,将其概括化为一项秘密任务。我们的环境标记方法在三个公开的数据集(JISGAWS、DEK和ROSO)的一致标签模式中可以产生不同的左侧和右侧记录,并大大改进LOSOTO的绩效。我们发现,如果MP的分部分模型模型能够进行更好的工作,那么,那么,那么,那么,那么,如果在以更精确的外科的外科手术诊断/或外科质量分析,那么,那么,那么,那么,那么,那么,那么,那么的外科的外科的外科的外科的外科的外科的外科的外科的外科的外科任务,那么,那么,那么,就能的外科的外科任务,就可以进行上下的工作,就可以进行精确的外科分析。