Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, called susceptibility, to gauge such memorization for neural networks. Susceptibility is simple and easy to compute during training. Moreover, it does not require access to ground-truth labels and it only uses unlabeled data. We empirically show the effectiveness of our metric in tracking memorization on various architectures and datasets and provide theoretical insights into the design of the susceptibility metric. Finally, we show through extensive experiments on datasets with synthetic and real-world label noise that one can utilize susceptibility and the overall training accuracy to distinguish models that maintain a low memorization on the training set and generalize well to unseen clean data.
翻译:深神经网络可以很容易地记住真实世界数据中存在的噪音标签,这些标签会降低其一般化能力。 因此,跟踪和评估模型的稳健性以对抗吵闹的标签记忆化非常重要。 我们建议了一种测量神经网络记忆度的量度,称为易感性,以测量神经网络的这种记忆化。 感知性既简单又容易计算。 此外,它不要求使用地面真实性标签,它只使用未贴标签的数据。 我们从经验中展示了我们在跟踪各种结构和数据集的记忆化和对易感度指标的设计提供理论洞察力的衡量标准的有效性。 最后,我们通过对带有合成和真实世界标签噪音的数据集进行广泛的实验,展示了能够利用感应性和总体培训准确性来区分在培训集上保持低度的记忆化模型,并很好地概括到看不见的清洁数据。