Inertial-sensor-based attitude estimation is a crucial technology in various applications, from human motion tracking to autonomous aerial and ground vehicles. Application scenarios differ in characteristics of the performed motion, presence of disturbances, and environmental conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics, their parameters must be tuned for the individual motion characteristics and circumstances. We propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial attitude estimator, which generalizes well across different motion dynamics, environments, and sampling rates, without the need for application-specific adaptations. We gather six publicly available datasets of which we exploit two datasets for the method development and the training, and we use four datasets for evaluation of the trained estimator in three different test scenarios with varying practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters in the sense that it generalizes much better across a variety of motions and conditions in different applications, with different sensor hardware and different sampling frequencies. This is true even if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely separate data and has never seen any of these test datasets. RIANN can be applied directly without adaptations or training and is therefore expected to enable plug-and-play solutions in numerous applications, especially when accuracy is crucial but no ground-truth data is available for tuning or when motion and disturbance characteristics are uncertain. We made RIANN publicly available.


翻译:从人类运动跟踪到自主的空中和地面飞行器等各种应用中,以感官为基础的姿态估计是一项关键技术,从人类运动跟踪到自主的空中和地面飞行器,应用情景各不相同,执行运动的特点、扰动的存在和环境条件各有不同。由于最先进的姿态估计者没有对这些特点进行广泛概括,因此其参数必须针对个别运动的特点和情况进行调整。我们提议了即时使用、神经网络基础、无参数、实时可控惯性姿态估测器RIANN,它广泛反映不同运动动态、环境和取样率,而不需要针对具体应用的调整。我们收集了六套公开可得的数据集,我们利用这两套数据集进行方法开发和培训,我们用四套数据集来评价经过培训的估测器,这三种不同的测试情景具有不同的实际相关性。结果显示,RINNNN在应用中比现状和可操作的惯性姿态估计过滤器更精确得多,因此,在不同的应用中,在不同的运动和取样器上,这种数据是完全的测试频率,而每次测试都是完全的。

0
下载
关闭预览

相关内容

【经典书】图论,322页pdf
专知会员服务
123+阅读 · 2021年10月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月29日
Arxiv
0+阅读 · 2022年1月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员