Latent variable models represent observed variables as parameterized functions of a set of latent variables. Examples are factor analysis or probabilistic sparse coding which assume weighted linear summations to determine the mean of Gaussian distribution for the observables. However, in many cases observables do not follow a normal distribution, and a linear summation of latents is often at odds with non-Gaussian observables (e.g., means of the Bernoulli distribution have to lie in the unit interval). Furthermore, the assumption of a linear summation model may (for many types of data) not be closely aligned with the true data generation process even for Gaussian observables. Alternative superposition models (i.e., alternative links between latents and observables) have therefore been investigated repeatedly. Here we show that using the maximization instead of summation to link latents to observables allows for the derivation of a very general and concise set of parameter update equations. Concretely, we derive a set of update equations that has the same functional form for all distributions of the exponential family. Our results consequently provide directly applicable learning equations for commonly as well as for unusually distributed data. We numerically verify our analytical results assuming standard Gaussian, Gamma, Poisson, Bernoulli and Exponential distributions. We point to some potential applications by providing different experiments on the learning of variance structure, noise type estimation, and denoising.
翻译:隐性可变模型代表了作为一组潜在变量参数参数功能的观察变量。例如,系数分析或概率稀释编码假设了加权线性总和,以假定用于确定可观测量的高萨分布值平均值的加权线性总和。然而,在许多情况下,可观测量不遵循正常分布,而潜伏线性总和往往与非古西亚可观测值(例如伯努利分布方式必须存在于单位间隔内)不一致(例如,伯尔尼利分布方式必须存在于单位间隔内)。此外,线性对数值对比模型的假设可能(对于许多类型的数据而言)可能与真正的数据生成过程不密切吻合,甚至对高萨观测器而言也是如此。因此,对替代的超定位模型(即潜值与可观测量和可观测值之间的替代链接)进行了多次调查。在这里,我们表明,利用最大化而不是将潜值与可观测值联系起来的对等值的一组参数更新方程式进行衍生。具体地说,我们得出一套更新方程式,对指数型组的所有分布都具有相同的功能形式。我们的结果是直接用于分析性地校验算,我们用于分析性地的GLimal 和GLA 。我们作为通常的研算结果,我们用于研究的研判判的研算结果,作为通常的研算数据。