Circulant matrices are an important tool widely used in coding theory and cryptography. A circulant matrix is a square matrix whose rows are the cyclic shifts of the first row. Such a matrix can be efficiently stored in memory because it is fully specified by its first row. The ring of $n \times n$ circulant matrices can be identified with the quotient ring $\mathbb{F}[x]/(x^n-1)$. In consequence, the strong algebraic structure of the ring $\mathbb{F}[x]/(x^n-1)$ can be used to study properties of the collection of all $n\times n$ circulant matrices. The ring $\mathbb{F}[x]/(x^n-1)$ is a special case of a group algebra and elements of any finite dimensional group algebra can be represented with square matrices which are specified by a single column. In this paper we study this representation and prove that it is an injective Hamming weight preserving homomorphism of $\mathbb{F}$-algebras and classify it in the case where the underlying group is abelian. Our work is motivated by the desire to generalize the BIKE cryptosystem (a contender in the NIST competition to get a new post-quantum standard for asymmetric cryptography). Group algebras can be used to design similar cryptosystems or, more generally, to construct low density or moderate density parity-check matrices for linear codes.


翻译:螺旋矩阵是大量用于编码理论和密码学的一个重要工具。 因此, 螺旋矩阵是一个平方矩阵, 其行是第一行的周期性变化。 这样的一个矩阵可以有效地存储在记忆中, 因为它由第一行完全指定。 $n\time n$ circurect 矩阵的环可以与商数环 $\mathbb{F} [x]/ (x)n-1$。 因此, 环的强烈代数结构可以用来研究收集所有 $n\time n$ circurant 矩阵的特性。 $\ mathb{ f} / (x}) ncurcurculan 矩阵的环可以被识别为 $\ mathbrb{ f} / (x} 1) 。 。 因此, 一个组的位数和任何定立维度组的代数组的元素可以用平方矩阵来表示。 在本文中, 我们研究这个表达方式, 并证明它是一个直导的 Hamble 重量, 要将直径直径直径直系的直径直径直径直径结构结构的直径直径结构 。 。 。 在 直径直系的直系的直系的直径直径直系的直系的直系的直系, 直系, 直径直径直系, 直系, 直系, 直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系, 直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系, 。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员