Circulant matrices are an important tool widely used in coding theory and cryptography. A circulant matrix is a square matrix whose rows are the cyclic shifts of the first row. Such a matrix can be efficiently stored in memory because it is fully specified by its first row. The ring of $n \times n$ circulant matrices can be identified with the quotient ring $\mathbb{F}[x]/(x^n-1)$. In consequence, the strong algebraic structure of the ring $\mathbb{F}[x]/(x^n-1)$ can be used to study properties of the collection of all $n\times n$ circulant matrices. The ring $\mathbb{F}[x]/(x^n-1)$ is a special case of a group algebra and elements of any finite dimensional group algebra can be represented with square matrices which are specified by a single column. In this paper we study this representation and prove that it is an injective Hamming weight preserving homomorphism of $\mathbb{F}$-algebras and classify it in the case where the underlying group is abelian. Our work is motivated by the desire to generalize the BIKE cryptosystem (a contender in the NIST competition to get a new post-quantum standard for asymmetric cryptography). Group algebras can be used to design similar cryptosystems or, more generally, to construct low density or moderate density parity-check matrices for linear codes.
翻译:螺旋矩阵是大量用于编码理论和密码学的一个重要工具。 因此, 螺旋矩阵是一个平方矩阵, 其行是第一行的周期性变化。 这样的一个矩阵可以有效地存储在记忆中, 因为它由第一行完全指定。 $n\time n$ circurect 矩阵的环可以与商数环 $\mathbb{F} [x]/ (x)n-1$。 因此, 环的强烈代数结构可以用来研究收集所有 $n\time n$ circurant 矩阵的特性。 $\ mathb{ f} / (x}) ncurcurculan 矩阵的环可以被识别为 $\ mathbrb{ f} / (x} 1) 。 。 因此, 一个组的位数和任何定立维度组的代数组的元素可以用平方矩阵来表示。 在本文中, 我们研究这个表达方式, 并证明它是一个直导的 Hamble 重量, 要将直径直径直径直系的直径直径直径直径结构结构的直径直径结构 。 。 。 在 直径直系的直系的直系的直径直径直系的直系的直系的直系, 直系, 直径直径直系, 直系, 直系, 直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系, 直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系, 。