The logistic linear mixed model (LLMM) is one of the most widely used statistical models. Generally, Markov chain Monte Carlo algorithms are used to explore the posterior densities associated with the Bayesian LLMMs. Polson, Scott and Windle's (2013) Polya-Gamma data augmentation (DA) technique can be used to construct full Gibbs (FG) samplers for the LLMMs. Here, we develop efficient block Gibbs (BG) samplers for Bayesian LLMMs using the Polya-Gamma DA method. We compare the FG and BG samplers in the context of a real data example, as the correlation between the fixed effects and the random effects changes as well as when the dimensions of the design matrices vary. These numerical examples demonstrate superior performance of the BG samplers over the FG samplers. We also derive conditions guaranteeing geometric ergodicity of the BG Markov chain when the popular improper uniform prior is assigned on the regression coefficients, and proper or improper priors are placed on the variance parameters of the random effects. This theoretical result has important practical implications as it justifies the use of asymptotically valid Monte Carlo standard errors for Markov chain based estimates of the posterior quantities.
翻译:物流线性混合模型(LLMM)是最广泛使用的统计模型之一。一般而言,使用Markov链链Monte Carlo算法来探索与巴伊西亚LMMs有关的后方密度。Polson、Scott和Windle的2013年Polica-Gamma数据增强(DA)技术可用于为LMMMs建造完整的Gibbs(FG)取样器。这里,我们使用Polila-Gamma DA方法为巴伊萨LMs开发高效的Gibs(BG)取样器。我们用真实的数据实例比较FG和BG取样器,因为固定效应与随机效应变化之间的相互关系以及设计矩阵的维度各不相同。这些数字示例显示了BG取样器在FG抽样器的优异性性性能。我们还得出了保证BG Markov链的几何偏差性的条件,因为以前流行的不妥统一是按回归系数分配的,而在随机效应的差异参数上放置正确或不适当的前科。这一理论结果具有重要的实际影响,因为它证明以MARimtototoimal 标准为标准使用数字标准。