Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a data set of lead pollution in Galicia, Spain.
翻译:参考前置物在理论上对地理统计数据的分析具有吸引力,因为这些前置物能够进行自动贝耶斯分析,并且具有可取的贝耶斯和常客特性。但是它们的使用受到计算障碍的阻碍,使得它们在实践中的应用具有挑战性。在这项工作中,我们得出了一个新的默认前置物类别,这些前置物的近似参考前置物是某些高斯随机字段参数的近似参考前置物。它基于对从静止随机字段光谱近光谱近点得出的共变参数的综合可能性的近似值。这一前置物取决于与辅助常规电网有关的一组光谱点所评价模型的平均功能和光谱密度的结构。除了保存其可取的贝耶斯和常客前置物特性之外,这些近似前置物的计算过程比精确参考前置物的要简单得多。与精确的前置物前置物前置物不同,相关参数的边缘近似值前置物始终是正确的,不管其平均功能或相近度函数的平滑度。这一属性对相容模型的选择有着重要的后果。将默认的Bayesian人分析与西班牙加利西亚的铅污染数据进行比较比较。