Domain decomposition (DD) methods are widely used as preconditioner techniques. Their effectiveness relies on the choice of a locally constructed coarse space. Thus far, this construction was mostly achieved using non-assembled matrices from discretized partial differential equations (PDEs). Therefore, DD methods were mainly successful when solving systems stemming from PDEs. In this paper, we present a fully algebraic multilevel DD method where the coarse space can be constructed locally and efficiently without any information besides the coefficient matrix. The condition number of the preconditioned matrix can be bounded by a user-prescribed number. Numerical experiments illustrate the effectiveness of the preconditioner on a range of problems arising from different applications.
翻译:域分解(DD)方法被广泛用作先决条件技术,其有效性取决于当地建造粗粗空间的选择,迄今为止,这一构造大多使用离散部分差异方程式(PDEs)的非集合矩阵来实现,因此,DD方法在解决源自PDEs的系统时主要是成功的。在本文件中,我们提出了一个完全代数的多层次DD方法,即粗皮空间可以在除系数矩阵之外没有任何信息的情况下在当地建造,并且效率很高。前提条件矩阵的条件数目可以受用户指定数字的约束。数字实验表明,先决条件对于不同应用产生的一系列问题来说是有效的。