This paper deals with unconstrained optimization problems based on numerical analysis of ordinary differential equations (ODEs). Although it has been known for a long time that there is a relation between optimization methods and discretization of ODEs, research in this direction has recently been gaining attention. In recent studies, the dissipation laws of ODEs have often played an important role. By contrast, in the context of numerical analysis, a technique called geometric numerical integration, which explores discretization to maintain geometrical properties such as the dissipation law, is actively studied. However, in research investigating the relationship between optimization and ODEs, techniques of geometric numerical integration have not been sufficiently investigated. In this paper, we show that a recent geometric numerical integration technique for gradient flow reads a new step-size criterion for the steepest descent method. Consequently, owing to the discrete dissipation law, convergence rates can be proved in a form similar to the discussion in ODEs. Although the proposed method is a variant of the existing steepest descent method, it is suggested that various analyses of the optimization methods via ODEs can be performed in the same way after discretization using geometric numerical integration.


翻译:本文根据对普通差分方程式(ODEs)的数值分析,论述未受限制的优化问题。虽然人们早就知道在优化方法与ODEs离散之间有关系,但最近人们越来越注意这方面的研究。在最近的研究中,ODE的散散法往往起着重要作用。相反,在数字分析中,正在积极研究一种称为几何数字集成的技术,该技术探索离散以维持诸如消散法等几何特性。然而,在研究优化与ODE之间的关系时,对几何数字集成技术没有进行充分的调查。在本文件中,我们表明,最近对梯度流的几何数字集成技术为最陡度下降法的新的分级标准。因此,由于离散法的散散法,趋同率可以以类似于ODEs的讨论方式加以证明。虽然拟议的方法是现有最陡度的脱落法的一种变法,但建议,在使用离心数集成后,可以同样的方式对通过ODEs进行各种的优化方法的分析。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员