Under stereo settings, the performance of image JPEG artifacts removal can be further improved by exploiting the additional information provided by a second view. However, incorporating this information for stereo image JPEG artifacts removal is a huge challenge, since the existing compression artifacts make pixel-level view alignment difficult. In this paper, we propose a novel parallax transformer network (PTNet) to integrate the information from stereo image pairs for stereo image JPEG artifacts removal. Specifically, a well-designed symmetric bi-directional parallax transformer module is proposed to match features with similar textures between different views instead of pixel-level view alignment. Due to the issues of occlusions and boundaries, a confidence-based cross-view fusion module is proposed to achieve better feature fusion for both views, where the cross-view features are weighted with confidence maps. Especially, we adopt a coarse-to-fine design for the cross-view interaction, leading to better performance. Comprehensive experimental results demonstrate that our PTNet can effectively remove compression artifacts and achieves superior performance than other testing state-of-the-art methods.
翻译:在立体设置下,通过利用第二个视图提供的额外信息可以进一步改进图像 JPEG 文物清除的性能。然而,将这种信息纳入立体图像 JPEG 文物清除工作是一项巨大的挑战,因为现有的压缩工艺品使得像素水平的视图难以对齐。在本文中,我们提议建立一个新型的parllax变压器网络(PTNet),以整合立体图像配对的信息,用于立体图像 JPEG 文物清除工作。具体地说,一个设计完善的对称双向双向双向准变压器模块,以匹配不同视图之间类似质质质的特征,而不是像素水平的视图校正。由于隔离和界限问题,建议一个基于信任的交叉视图融合模块,以便在交叉视图特征与信任图进行加权的情况下,为两种观点实现更好的特征融合。特别是,我们采用了一个用于交叉视图互动的粗到线设计,导致更好的性能。全面实验结果表明,我们的PTNet能够有效地去除压缩工艺品的压缩,并实现优于其他测试状态方法。