Poles and building edges are frequently observable objects on urban roads, conveying reliable hints for various computer vision tasks. To repetitively extract them as features and perform association between discrete LiDAR frames for registration, we propose the first learning-based feature segmentation and description model for 3D lines in LiDAR point cloud. To train our model without the time consuming and tedious data labeling process, we first generate synthetic primitives for the basic appearance of target lines, and build an iterative line auto-labeling process to gradually refine line labels on real LiDAR scans. Our segmentation model can extract lines under arbitrary scale perturbations, and we use shared EdgeConv encoder layers to train the two segmentation and descriptor heads jointly. Base on the model, we can build a highly-available global registration module for point cloud registration, in conditions without initial transformation hints. Experiments have demonstrated that our line-based registration method is highly competitive to state-of-the-art point-based approaches. Our code is available at https://github.com/zxrzju/SuperLine3D.git.
翻译:电极和建筑边缘往往是城市道路上经常可见的物体,为各种计算机视觉任务传递可靠的提示。为了重复地把它们提取为特征,并在离散的LiDAR框架之间进行连接登记,我们为LiDAR点云中的三维线提出了第一个基于学习的特征分解和描述模型。为了在没有时间消耗和重复的数据标签程序的情况下培训我们的模型,我们首先为目标线的基本外观生成合成原始材料,并建立一个迭代线自动标签程序,以逐步改进真实的LiDAR扫描的线条标签。我们的分解模型可以在任意的尺度扰动下提取线条线条,我们用共享的 Enge Conv 编码层来联合培训两个分解分解和描述符头。根据模型,我们可以在没有初始转换提示的条件下为点云登记建立一个高度可用的全球登记模块。实验表明,我们基于线的登记方法对于州-艺术点基方法具有高度竞争力。我们的代码可以在 https://github.com/zxrzju/SuperLine3D.giat上查阅。