In 1988, Moulin proved an insightful and surprising impossibility theorem that reveals a fundamental incompatibility between two commonly-studied axioms of voting: no resolute voting rule (which outputs a single winner) satisfies Condorcet Criterion and Participation simultaneously when the number of alternatives m is at least four. In this paper, we prove an extension of this impossibility theorem using smoothed analysis: for any fixed $m\ge 4$ and any voting rule r, under mild conditions, the smoothed likelihood for both Condorcet Criterion and Participation to be satisfied is at most $1-\Omega(n^{-3})$, where n is the number of voters that is sufficiently large. Our theorem immediately implies a quantitative version of the theorem for i.i.d. uniform distributions, known as the Impartial Culture in social choice theory.
翻译:1988年,Moulin证明了一个有见地的、令人惊讶的不可能的理论,它揭示了两个共同研究的投票轴心之间根本的不相容性:任何坚定的投票规则(它产生单一的赢家)在替代标准数量至少为四个时同时满足了Condorcet标准和参与。在本文中,我们用平滑的分析证明了这种不可能的理论的延伸:对于任何固定的4美元和任何投票规则,在温和的条件下,Condorcet标准与参与的顺利满足的可能性最多为1美元-Omega(n ⁇ -3})美元,其中选民人数足够多。我们的理论立即意味着对例如,d. 统一分配的理论的定量版本,即社会选择理论中被称为“公正文化 ” 。