We consider the {\em vector partition problem}, where $n$ agents, each with a $d$-dimensional attribute vector, are to be partitioned into $p$ parts so as to minimize cost which is a given function on the sums of attribute vectors in each part. The problem has applications in a variety of areas including clustering, logistics and health care. We consider the complexity and parameterized complexity of the problem under various assumptions on the natural parameters $p,d,a,t$ of the problem where $a$ is the maximum absolute value of any attribute and $t$ is the number of agent types, and raise some of the many remaining open problems.


翻译:我们考虑到 ~ 矢量分布问题}, 美元代理物, 每一个都有美元维度属性矢量, 被分割成美元元件, 以最大限度地减少每一部分属性矢量总和上的一个特定函数的成本。 这个问题在多个领域都有应用, 包括集群、 物流和医疗保健。 我们考虑到问题的复杂性和参数的复杂性, 其依据是对自然参数的各种假设 $p, d, a, t$ 问题, 美元是任何属性的最大绝对值, 美元是所有属性的绝对值, 美元是各类属性的数量, 并提出了许多剩余未决问题中的一些问题 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
6+阅读 · 2018年6月20日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
6+阅读 · 2018年6月20日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员