Classical results in computability theory, notably Rice's theorem, focus on the extensional content of programs, namely, on the partial recursive functions that programs compute. Later and more recent work investigated intensional generalisations of such results that take into account the way in which functions are computed, thus affected by the specific programs computing them. In this paper, we single out a novel class of program semantics based on abstract domains of program properties that are able to capture nonextensional aspects of program computations, such as their asymptotic complexity or logical invariants, and allow us to generalise some foundational computability results such as Rice's Theorem and Kleene's Second Recursion Theorem to these semantics. In particular, it turns out that for this class of abstract program semantics, any nontrivial abstract property is undecidable and every decidable over-approximation necessarily includes an infinite set of false positives which covers all the values of the semantic abstract domain.
翻译:经典的可比较性理论结果, 主要是 Rice 的理论, 侧重于程序的扩展内容, 即程序计算中的部分递归函数 。 后来和最近的工作调查了这些结果的强化性概括, 这些结果考虑到了函数的计算方式, 因而受到计算这些函数的具体程序的影响 。 在本文中, 我们根据程序属性的抽象域, 挑选出一个新的程序语义分类, 能够捕捉到程序计算中非扩展的方面, 比如它们的非扩展性复杂性或逻辑变量, 并允许我们将一些基本可比较性结果( 如 Rice 的Theorem 和 Kleene 的 第二次递解理论) 概括到这些语义学上。 特别是, 这一系列的抽象程序语义学, 任何非边际抽象的抽象属性都不可确定, 并且每一个可分解的过度适应性, 都必然包含一套无限的虚假肯定性, 涵盖语义抽象域的所有值 。