Pathwise coordinate descent algorithms have been used to compute entire solution paths for lasso and other penalized regression problems quickly with great success. They improve upon cold start algorithms by solving the problems that make up the solution path sequentially for an ordered set of tuning parameter values, instead of solving each problem separately. However, extending pathwise coordinate descent algorithms to more the general bridge or power family of $\ell_q$ penalties is challenging. Faster algorithms for computing solution paths for these penalties are needed because $\ell_q$ penalized regression problems can be nonconvex and especially burdensome to solve. In this paper, we show that a reparameterization of $\ell_q$ penalized regression problems is more amenable to pathwise coordinate descent algorithms. This allows us to improve computation of the mode-thresholding function for $\ell_q$ penalized regression problems in practice and introduce two separate pathwise algorithms. We show that either pathwise algorithm is faster than the corresponding cold-start alternative, and demonstrate that different pathwise algorithms may be more likely to reach better solutions.
翻译:路径协调下游算法已被快速成功地用于计算 lasso 和其他受处罚回归问题的整条解决方案路径。 它们被快速地用于计算 lasso 和其他受处罚回归问题的整条解决方案路径。 在冷开始算法中, 它们被改进了。 通过按顺序为一组有顺序的调制参数值、而不是分别解决每个问题, 从而解决了构成解决方案路径的问题。 但是, 将基于路径的协调下游算法推广到更多的通用桥桥或强力的 $\ ell_ q$ 罚款家族是困难的。 计算这些处罚的解决方案路径需要更快的算法, 因为 $\ ell_ q$ 受处罚的回归问题可能是非电解密的, 特别是解决的麻烦。 在本文中, 我们显示, $\ ell_ q$ 受处罚的回归问题重新计法比较容易在路径上协调 。 这使我们能够改进 $\\ ell_ q$ 的公式的计算, 并引入两种不同的路径算法。 我们显示, 任何一种路径算法都比相应的冷开始的替代法都更可能达成更好的解决方案 。