Learning to communicate in order to share state information is an active problem in the area of multi-agent reinforcement learning (MARL). The credit assignment problem, the non-stationarity of the communication environment and the creation of influenceable agents are major challenges within this research field which need to be overcome in order to learn a valid communication protocol. This paper introduces the novel multi-agent counterfactual communication learning (MACC) method which adapts counterfactual reasoning in order to overcome the credit assignment problem for communicating agents. Secondly, the non-stationarity of the communication environment while learning the communication Q-function is overcome by creating the communication Q-function using the action policy of the other agents and the Q-function of the action environment. Additionally, a social loss function is introduced in order to create influenceable agents which is required to learn a valid communication protocol. Our experiments show that MACC is able to outperform the state-of-the-art baselines in four different scenarios in the Particle environment.


翻译:学习交流以分享国家信息是多试剂强化学习(MARL)领域的一个积极问题。 信用分配问题、通信环境的不固定性以及建立具有影响力的代理人是这一研究领域的重大挑战,需要加以克服,以便学习有效的通信协议。本文件介绍了新的多试剂反事实交流学习方法,该方法适应反事实推理,以克服通信代理的信用分配问题。第二,在学习通信Q功能的同时,通信环境的不固定性通过利用其他代理人的行动政策和行动环境的功能来创建通信Q功能而得以克服。此外,还引入了社会损失功能,以创造具有影响力的代理人,而这是学习有效的通信协议所必需的。我们的实验表明,在粒子环境中,通信理事会能够在四种不同情景中超越最先进的基线。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年10月9日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Shape Rewards using a Game of Two Partners
Arxiv
0+阅读 · 2021年10月28日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年10月9日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员