We introduce a new approach to learning in hierarchical latent-variable generative models called the "distributed distributional code Helmholtz machine", which emphasises flexibility and accuracy in the inferential process. In common with the original Helmholtz machine and later variational autoencoder algorithms (but unlike adverserial methods) our approach learns an explicit inference or "recognition" model to approximate the posterior distribution over the latent variables. Unlike in these earlier methods, the posterior representation is not limited to a narrow tractable parameterised form (nor is it represented by samples). To train the generative and recognition models we develop an extended wake-sleep algorithm inspired by the original Helmholtz Machine. This makes it possible to learn hierarchical latent models with both discrete and continuous variables, where an accurate posterior representation is essential. We demonstrate that the new algorithm outperforms current state-of-the-art methods on synthetic, natural image patch and the MNIST data sets.


翻译:我们引入了一种新的方法来学习等级潜伏可变基因模型,称为“分布式分配代码赫尔莫尔茨机器”,强调推论过程的灵活性和准确性。与原赫尔莫尔茨机器和后来的变式自动coder算法(但不同于对立方法)相同,我们的方法学会了一种明确的推论或“识别”模型,以近似潜伏变量的后部分布。与以前的方法不同,后部表示法并不局限于一种狭窄的可移植参数形式(而不是由样本代表 ) 。为了培训基因化和识别模型,我们开发了一种由原赫尔莫尔茨机器启发的扩大的觉醒算法。这使我们有可能学习具有离散和连续变量的分级潜伏模型,在这些变量中,精确的后部表示法至关重要。我们证明新的算法超越了合成、自然图像补合和MNIST数据集方面的当前状态-艺术方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Inferred successor maps for better transfer learning
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员