We introduce a new approach to learning in hierarchical latent-variable generative models called the "distributed distributional code Helmholtz machine", which emphasises flexibility and accuracy in the inferential process. In common with the original Helmholtz machine and later variational autoencoder algorithms (but unlike adverserial methods) our approach learns an explicit inference or "recognition" model to approximate the posterior distribution over the latent variables. Unlike in these earlier methods, the posterior representation is not limited to a narrow tractable parameterised form (nor is it represented by samples). To train the generative and recognition models we develop an extended wake-sleep algorithm inspired by the original Helmholtz Machine. This makes it possible to learn hierarchical latent models with both discrete and continuous variables, where an accurate posterior representation is essential. We demonstrate that the new algorithm outperforms current state-of-the-art methods on synthetic, natural image patch and the MNIST data sets.
翻译:我们引入了一种新的方法来学习等级潜伏可变基因模型,称为“分布式分配代码赫尔莫尔茨机器”,强调推论过程的灵活性和准确性。与原赫尔莫尔茨机器和后来的变式自动coder算法(但不同于对立方法)相同,我们的方法学会了一种明确的推论或“识别”模型,以近似潜伏变量的后部分布。与以前的方法不同,后部表示法并不局限于一种狭窄的可移植参数形式(而不是由样本代表 ) 。为了培训基因化和识别模型,我们开发了一种由原赫尔莫尔茨机器启发的扩大的觉醒算法。这使我们有可能学习具有离散和连续变量的分级潜伏模型,在这些变量中,精确的后部表示法至关重要。我们证明新的算法超越了合成、自然图像补合和MNIST数据集方面的当前状态-艺术方法。