We aim to understand how people assess human likeness in navigation produced by people and artificially intelligent (AI) agents in a video game. To this end, we propose a novel AI agent with the goal of generating more human-like behavior. We collect hundreds of crowd-sourced assessments comparing the human-likeness of navigation behavior generated by our agent and baseline AI agents with human-generated behavior. Our proposed agent passes a Turing Test, while the baseline agents do not. By passing a Turing Test, we mean that human judges could not quantitatively distinguish between videos of a person and an AI agent navigating. To understand what people believe constitutes human-like navigation, we extensively analyze the justifications of these assessments. This work provides insights into the characteristics that people consider human-like in the context of goal-directed video game navigation, which is a key step for further improving human interactions with AI agents.
翻译:我们的目标是了解人们如何评估人和人工智能(AI)代理人在视频游戏中制造的导航中的人类相似性。 为此,我们提出一个新的人工智能代理人,目的是产生更多的类似人类的行为。 我们收集了成百上千的多方来源评估,比较了我们代理人和基线AI代理人在导航行为中的人类相似性与人类产生的行为。 我们提议的代理人通过了图灵测试,而基线代理人却没有这样做。 通过图灵测试,我们意味着人类法官无法从数量上区分一个人和人工智能代理人在视频中的视频。 为了了解人们认为什么是人一样的导航,我们广泛分析了这些评估的理由。 这项工作让人们深入了解了人们在定向视频游戏导航中认为人类相似的特征,这是进一步改善人类与AI代理人互动的关键一步。</s>