In this paper, we introduce novel lightweight generative adversarial networks, which can effectively capture long-range dependencies in the image generation process, and produce high-quality results with a much simpler architecture. To achieve this, we first introduce a long-range module, allowing the network to dynamically adjust the number of focused sampling pixels and to also augment sampling locations. Thus, it can break the limitation of the fixed geometric structure of the convolution operator, and capture long-range dependencies in both spatial and channel-wise directions. Also, the proposed long-range module can highlight negative relations between pixels, working as a regularization to stabilize training. Furthermore, we propose a new generation strategy through which we introduce metadata into the image generation process to provide basic information about target images, which can stabilize and speed up the training process. Our novel long-range module only introduces few additional parameters and is easily inserted into existing models to capture long-range dependencies. Extensive experiments demonstrate the competitive performance of our method with a lightweight architecture.


翻译:在本文中,我们引入了新型的轻量级基因对抗网络,这些网络能够有效捕捉图像生成过程中的长距离依赖性,并产生高质量的成果,而其结构要简单得多。为了实现这一点,我们首先引入了一个长距离模块,让网络能够动态地调整重点抽样像素的数量,同时扩大取样地点。因此,它可以打破对卷发操作员固定几何结构的限制,捕捉空间和频道方向上的长距离依赖性。此外,拟议的长距离模块可以突出像素之间的负面关系,作为稳定培训的正规化。此外,我们提出了新一代战略,通过这一战略,我们将元数据引入图像生成过程,以提供有关目标图像的基本信息,从而稳定并加快培训过程。我们的新长距离模块只引入了少数额外的参数,而且很容易插入到现有的模型中以捕捉长距离依赖性。广泛的实验展示了我们方法在轻度结构下的竞争性表现。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
44+阅读 · 2022年9月6日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员