Extracting building heights from satellite images is an active research area used in many fields such as telecommunications, city planning, etc. Many studies utilize DSM (Digital Surface Models) generated with lidars or stereo images for this purpose. Predicting the height of the buildings using only RGB images is challenging due to the insufficient amount of data, low data quality, variations of building types, different angles of light and shadow, etc. In this study, we present an instance segmentation-based building height extraction method to predict building masks with their respective heights from a single RGB satellite image. We used satellite images with building height annotations of certain cities along with an open-source satellite dataset with the transfer learning approach. We reached, the bounding box mAP 59, the mask mAP 52.6, and the average accuracy value of 70% for buildings belonging to each height class in our test set.
翻译:从卫星图像中提取建筑高度是一个活跃的研究领域,用于许多领域,如电信、城市规划等。许多研究为此利用了用利达尔或立体图像生成的DSM(数字表面模型)。由于数据数量不足、数据质量低、建筑类型变化、光和阴影等不同角度等原因,仅使用RGB图像预测建筑物高度具有挑战性。在本研究中,我们提出了一个以实例为基础的建筑高度提取方法,以预测用单一RGB卫星图像中各自高度建造遮罩的情况。我们使用了带有某些城市建筑高度说明的卫星图像,以及一个带有转移学习方法的开放源卫星数据集。我们到达了捆绑框的MAP 59、蒙面 mAP 52.6,以及测试集中属于每个高度的建筑物的平均精度值为70%。