In this paper, we present offline-to-online knowledge distillation (OOKD) for video instance segmentation (VIS), which transfers a wealth of video knowledge from an offline model to an online model for consistent prediction. Unlike previous methods that having adopting either an online or offline model, our single online model takes advantage of both models by distilling offline knowledge. To transfer knowledge correctly, we propose query filtering and association (QFA), which filters irrelevant queries to exact instances. Our KD with QFA increases the robustness of feature matching by encoding object-centric features from a single frame supplemented by long-range global information. We also propose a simple data augmentation scheme for knowledge distillation in the VIS task that fairly transfers the knowledge of all classes into the online model. Extensive experiments show that our method significantly improves the performance in video instance segmentation, especially for challenging datasets including long, dynamic sequences. Our method also achieves state-of-the-art performance on YTVIS-21, YTVIS-22, and OVIS datasets, with mAP scores of 46.1%, 43.6%, and 31.1%, respectively.


翻译:在本文中,我们展示了用于视频实例分解的离线至线知识蒸馏(OOKD),将大量视频知识从离线模型转移到在线预测的在线模型。与以往采用在线或离线模型的方法不同,我们单一的在线模型利用了两种模型。为了正确传递知识,我们建议查询过滤和联系(QFA),将无关的查询过滤到准确的事例。我们与QFA的KD通过远程全球信息补充的单个框架,通过编码对象中心特征,提高了功能匹配的强度。我们还提出了一个简单的数据增强方案,用于在VIS任务中进行知识提炼,将所有类别的知识公平传递到在线模型中。广泛的实验表明,我们的方法大大改进了视频实例分解的性能,特别是具有挑战性的数据集,包括长动态序列。我们的方法还在YTVIS-21、YTVIS-22和OVIS数据集中分别实现了46.1%、43.6%和31.1%的 mAP分级。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年4月6日
Arxiv
1+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
12+阅读 · 2021年11月1日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员