We present an algorithm for computing approximate $\ell_p$ Lewis weights to high precision. Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ and a scalar $p>2$, our algorithm computes $\epsilon$-approximate $\ell_p$ Lewis weights of $\mathbf{A}$ in $\widetilde{O}_p(\log(1/\epsilon))$ iterations; the cost of each iteration is linear in the input size plus the cost of computing the leverage scores of $\mathbf{D}\mathbf{A}$ for diagonal $\mathbf{D} \in \mathbb{R}^{m \times m}$. Prior to our work, such a computational complexity was known only for $p \in (0, 4)$ [CohenPeng2015], and combined with this result, our work yields the first polylogarithmic-depth polynomial-work algorithm for the problem of computing $\ell_p$ Lewis weights to high precision for all constant $p > 0$. An important consequence of this result is also the first polylogarithmic-depth polynomial-work algorithm for computing a nearly optimal self-concordant barrier for a polytope.
翻译:我们提出一个计算成本的算法, 计算近于 $\ ell_ p$ Lewis 重量至高精度 。 如果在 mathbb{ R} A} 和 calar $ 美元 和 caltar $, 我们的算法计算了 $\ el_ p$- 近于 $\ mathbf{ 美元 $\ ll_ p$ 美元, 以 $\ 全方英尺{ O ⁇ p( log (1/\ epsilon) ) 美元进行高精度的计算。 在计算之前, 这种计算复杂度只为 $p lip\ in 0, 4 美元 [ChenPeng2015] ; 在计算输入大小时, 每次深度的成本是直线值的直线值, 计算杠杆值是 $mathbf{ D} 的利差值 。