Let a polytope $\mathcal{P}$ be defined by one of the following ways: (i) $\mathcal{P} = \{x \in \mathbb{R}^n \colon A x \leq b\}$, where $A \in \mathbb{Z}^{(n+m) \times n}$, $b \in \mathbb{Z}^{(n+m)}$, and $rank(A) = n$, (ii) $\mathcal{P} = \{x \in \mathbb{R}_+^n \colon A x = b\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^{m}$, and $rank(A) = m$, and let all the rank minors of $A$ be bounded by $\Delta$ in the absolute values. We show that $|\mathcal{P} \cap \mathbb{Z}^n|$ can be computed with an algorithm, having the arithmetic complexity bound $$ O\bigl( \nu(d,m,\Delta) \cdot d^3 \cdot \Delta^4 \cdot \log(\Delta) \bigr), $$ where $d = \dim(\mathcal{P})$ and $\nu(d,m,\Delta)$ is the maximal possible number of vertices in a $d$-dimensional polytope $P$, defined by one of the systems above. Using the obtained result, we have the following arithmetical complexity bounds to compute $|P \cap \mathbb{Z}^n|$: 1) The bound $O(\frac{d}{m}+1)^m \cdot d^3 \cdot \Delta^4 \cdot \log(\Delta)$ that is polynomial on $d$ and $\Delta$, for any fixed $m$; 2) The bound $O\bigl(\frac{m}{d}+1\bigr)^{\frac{d}{2}} \cdot d^4 \cdot \Delta^4 \cdot \log(\Delta)$ that is polynomial on $m$ and $\Delta$, for any fixed $d$; 3) The bound $O(d)^{4 + \frac{d}{2}} \cdot \Delta^{4+d} \cdot \log(\Delta)$ that is polynomial on $\Delta$, for any fixed $d$. Given bounds can be used to obtain faster algorithms for the ILP feasibility problem, and for the problem to count integer points in a simplex or in an unbounded Subset-Sum polytope. Unbounded and parametric versions of the above problem are also considered.


翻译:IPLE $\ m= m; $, $; $; $; $; $; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 立方 ; 美元; 美元; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 立方 ; 立方 立方 ; 立方 立方 ; 立方 立方 立方 ; 立方 立方 立方 ; 立方 立方 立方 立方 ; 立方 立方 立方 立方 立方 ;

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员