Let a polytope $\mathcal{P}$ be defined by one of the following ways: (i) $\mathcal{P} = \{x \in \mathbb{R}^n \colon A x \leq b\}$, where $A \in \mathbb{Z}^{(n+m) \times n}$, $b \in \mathbb{Z}^{(n+m)}$, and $rank(A) = n$, (ii) $\mathcal{P} = \{x \in \mathbb{R}_+^n \colon A x = b\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^{m}$, and $rank(A) = m$, and let all the rank minors of $A$ be bounded by $\Delta$ in the absolute values. We show that $|\mathcal{P} \cap \mathbb{Z}^n|$ can be computed with an algorithm, having the arithmetic complexity bound $$ O\bigl( \nu(d,m,\Delta) \cdot d^3 \cdot \Delta^4 \cdot \log(\Delta) \bigr), $$ where $d = \dim(\mathcal{P})$ and $\nu(d,m,\Delta)$ is the maximal possible number of vertices in a $d$-dimensional polytope $P$, defined by one of the systems above. Using the obtained result, we have the following arithmetical complexity bounds to compute $|P \cap \mathbb{Z}^n|$: 1) The bound $O(\frac{d}{m}+1)^m \cdot d^3 \cdot \Delta^4 \cdot \log(\Delta)$ that is polynomial on $d$ and $\Delta$, for any fixed $m$; 2) The bound $O\bigl(\frac{m}{d}+1\bigr)^{\frac{d}{2}} \cdot d^4 \cdot \Delta^4 \cdot \log(\Delta)$ that is polynomial on $m$ and $\Delta$, for any fixed $d$; 3) The bound $O(d)^{4 + \frac{d}{2}} \cdot \Delta^{4+d} \cdot \log(\Delta)$ that is polynomial on $\Delta$, for any fixed $d$. Given bounds can be used to obtain faster algorithms for the ILP feasibility problem, and for the problem to count integer points in a simplex or in an unbounded Subset-Sum polytope. Unbounded and parametric versions of the above problem are also considered.
翻译:IPLE $\ m= m; $, $; $; $; $; $; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 美元; 立方 ; 美元; 美元; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 ; 立方 立方 ; 立方 立方 ; 立方 立方 ; 立方 立方 立方 ; 立方 立方 立方 ; 立方 立方 立方 立方 ; 立方 立方 立方 立方 立方 ;