In this paper, we study the graph realization problem in the Congested Clique model of distributed computing under crash faults. We consider {\em degree-sequence realization}, in which each node $v$ is associated with a degree value $d(v)$, and the resulting degree sequence is realizable if it is possible to construct an overlay network with the given degrees. Our main result is a $O(f)$-round deterministic algorithm for the degree-sequence realization problem in a $n$-node Congested Clique, of which $f$ nodes could be faulty ($f<n$). The algorithm uses $O(n^2)$ messages. We complement the result with lower bounds to show that the algorithm is tight w.r.t the number of rounds and the messages simultaneously. We also extend our result to the Node Capacitated Clique (NCC) model, where each node is restricted to sending and receiving at-most $O(\log n)$ messages per round. In the NCC model, our algorithm solves degree-sequence realization in $O(nf/\log n)$ rounds and $O(n^2)$ messages. For both settings, our algorithms work without the knowledge of $f$, the number of faults. To the best of our knowledge, these are the first results for the graph realization problem in the crash-fault distributed network.


翻译:在本文中, 我们研究在崩溃断层下分布式计算 的 Congestested Clique 模型中的图形实现问题。 我们考虑 $f$ 的节点可能是错误的 美元。 算法使用$O (n)2 的讯息。 我们用较低的界限来补充结果, 显示算法是紧紧的 w.r.t 回合数和电文。 我们还将结果推广到Norde Capacitate Clique (NCC) 模式, 其中每个节点只能发送和接收最接近 $O (log n) 的信息。 在 NCC 模型中, 算法使用$(n) $(n) 的信息。 在 $( $) 轨道上, 我们的解算法和 美元( $) 算法中, 我们的解算法和 美元( $) 的解算法, 我们的解算法, 这些解算法在 $( $) 回合中, 我们的解算法( ) 和 美元的解算法( 美元) 实现。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员