In this paper, we study the graph realization problem in the Congested Clique model of distributed computing under crash faults. We consider {\em degree-sequence realization}, in which each node $v$ is associated with a degree value $d(v)$, and the resulting degree sequence is realizable if it is possible to construct an overlay network with the given degrees. Our main result is a $O(f)$-round deterministic algorithm for the degree-sequence realization problem in a $n$-node Congested Clique, of which $f$ nodes could be faulty ($f<n$). The algorithm uses $O(n^2)$ messages. We complement the result with lower bounds to show that the algorithm is tight w.r.t the number of rounds and the messages simultaneously. We also extend our result to the Node Capacitated Clique (NCC) model, where each node is restricted to sending and receiving at-most $O(\log n)$ messages per round. In the NCC model, our algorithm solves degree-sequence realization in $O(nf/\log n)$ rounds and $O(n^2)$ messages. For both settings, our algorithms work without the knowledge of $f$, the number of faults. To the best of our knowledge, these are the first results for the graph realization problem in the crash-fault distributed network.
翻译:在本文中, 我们研究在崩溃断层下分布式计算 的 Congestested Clique 模型中的图形实现问题。 我们考虑 $f$ 的节点可能是错误的 美元。 算法使用$O (n)2 的讯息。 我们用较低的界限来补充结果, 显示算法是紧紧的 w.r.t 回合数和电文。 我们还将结果推广到Norde Capacitate Clique (NCC) 模式, 其中每个节点只能发送和接收最接近 $O (log n) 的信息。 在 NCC 模型中, 算法使用$(n) $(n) 的信息。 在 $( $) 轨道上, 我们的解算法和 美元( $) 算法中, 我们的解算法和 美元( $) 的解算法, 我们的解算法, 这些解算法在 $( $) 回合中, 我们的解算法( ) 和 美元的解算法( 美元) 实现。