We study the computational power of one-round distributed algorithms in the congested clique model. We show that any one-round algorithm that computes a minimum spanning tree (MST) in the unicast congested clique must use a link bandwidth of $\Omega(\log^3 n)$ bits in the worst case. This is the first round complexity lower bound in the unicast congested clique for a problem where the output size is small, i.e., $O(n\log n)$ bits. Our main technical contribution is to investigate one-round algorithms in the broadcast congested clique and, equivalently, the distributed graph sketching model where the nodes send their message to a referee who computes the output. First, we present a tight lower bound of $\Omega(n)$ bits for the message size of computing a breadth-first search tree. Then, we prove that computing a $k$-edge connected spanning subgraph ($k$-ECSS) requires messages of size at least $\Omega \left( k\log^2(n/k) \right)$. We also show that verifying whether a given vertex coloring forms a weak 2-coloring of the input graph requires messages of $\Omega(n^{1/3}\log^{2/3}n)$ bits, and the same lower bound holds for verifying whether a subset of nodes forms a maximal independent set or a minimal dominating set. Interestingly, it turns out that the same class of lower bound graphs for the distributed sketching model is versatile enough to yield a space lower bound of $\Omega(n^2)$ bits for verifying symmetry breaking problems such as weak $2$-coloring in the fully dynamic turnstile model, where the input arrives as a stream of edges. We also (nearly) settle the space complexity of the $k$-ECSS problem in the streaming model by extending the work of Kapralov et al. (FOCS 2017): We prove a communication complexity lower bound for a direct sum variant of the $\text{UR}_k^{\subset}$ problem and show that this implies $\Omega(k\,n\log^2(n/k))$ bits of memory for computing a $k$-ECSS.
翻译:我们研究了一个圆形分布式算法的计算能力( 在混凝土 cluique 模型中 ) 。 我们显示, 任何一回合算法, 在单式凝结 clocique 的情况下, 计算一个最小的横贯树( MST) 。 在最坏的案例中, 必须要使用 $\ Omega (\log3 n) 的链接带宽 。 这是在单式混混杂的组合中, 用于一个输出大小小的问题 。 也就是说, 美元 (O\ log n) 。 我们的主要技术贡献是调查一个圆形算法, 计算一个最小的跨基流 美元 ; 美元 美元 美元 的平流 ; 同样, 我们为计算一个宽度第一个搜索树的电解码问题, 美元 美元 的最小基数 ; 美元 美元 美元 平流解算法 将一个最小的电算法 。