We propose Multi-Task Multi-Behavior MAP-Elites, a variant of MAP-Elites that finds a large number of high-quality solutions for a large set of tasks (optimization problems from a given family). It combines the original MAP-Elites for the search for diversity and Multi-Task MAP-Elites for leveraging similarity between tasks. It performs better than three baselines on a humanoid fault-recovery set of tasks, solving more tasks and finding twice as many solutions per solved task.
翻译:我们提出了一种名为多任务多行为 MAP-Elites 的算法,它是 MAP-Elites 的一个变种,可针对一组与特定问题有关的优化任务找到大量高质量解。它将原始的 MAP-Elites 用于搜索多样性,Multi-Task MAP-Elites 用于利用任务之间的相似性。在人形机器人故障恢复任务集上,它的表现优于三个基准算法,解决了更多的任务,并为每个解决的任务找到了两倍的解。