The costs and impacts of government corruption range from impairing a country's economic growth to affecting its citizens' well-being and safety. Public contracting between government dependencies and private sector instances, referred to as public procurement, is a fertile land of opportunity for corrupt practices, generating substantial monetary losses worldwide. Thus, identifying and deterring corrupt activities between the government and the private sector is paramount. However, due to several factors, corruption in public procurement is challenging to identify and track, leading to corrupt practices going unnoticed. This paper proposes a machine learning model based on an ensemble of random forest classifiers, which we call hyper-forest, to identify and predict corrupt contracts in M\'exico's public procurement data. This method's results correctly detect most of the corrupt and non-corrupt contracts evaluated in the dataset. Furthermore, we found that the most critical predictors considered in the model are those related to the relationship between buyers and suppliers rather than those related to features of individual contracts. Also, the method proposed here is general enough to be trained with data from other countries. Overall, our work presents a tool that can help in the decision-making process to identify, predict and analyze corruption in public procurement contracts.


翻译:政府腐败的成本和影响从损害一国的经济增长到影响其公民的福利和安全。政府依赖性和私营部门(称为公共采购)之间的公开订约是腐败行径的良机之地,在全世界造成了巨大的货币损失。因此,查明和阻止政府与私营部门之间的腐败活动至关重要。然而,由于若干因素,公共采购中的腐败对查明和追踪腐败做法具有挑战性,导致腐败做法得不到注意。本文件提议了一个机械学习模式,其基础是随机的森林分类人员组合,我们称之为超森林,在M\'exico的公共采购数据中查明和预测腐败合同。这种方法的结果正确地检测了在数据集中评估的大多数腐败和非腐败合同。此外,我们发现,模型中考虑的最关键的预测因素是那些与买方和供应商之间的关系有关,而不是与个别合同特征有关。此外,此处提出的方法很笼统,足以用其他国家的数据来培训。总体而言,我们的工作提供了一个工具,有助于在决策过程中查明、预测和分析以及公共采购中的腐败。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员