In this work, we investigate the behavior of quantum entropy under quantum convolution and its application in quantifying magic. We first establish an entropic, quantum central limit theorem (q-CLT), where the rate of convergence is bounded by the magic gap. We also introduce a new quantum divergence based on quantum convolution, called the quantum Ruzsa divergence, to study the stabilizer structure of quantum states. We conjecture a ``convolutional strong subadditivity'' inequality, which leads to the triangle inequality for the quantum Ruzsa divergence. In addition, we propose two new magic measures, the quantum Ruzsa divergence of magic and quantum-doubling constant, to quantify the amount of magic in quantum states. Finally, by using the quantum convolution, we extend the classical, inverse sumset theory to the quantum case. These results shed new insight into the study of the stabilizer and magic states in quantum information theory.
翻译:暂无翻译