We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, and a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution.
翻译:我们提出脱离基础的概念,作为基于煤基的模型逻辑的正常形式的通用框架。 在以前关于模型固定点逻辑完整性的工作中,确定了分离基础,这些基础在证明煤基的通用完整性理论中发挥着核心作用。 相信这个概念具有更广泛的意义, 我们从右侧更彻底地调查这个概念。 我们表明, 在“ 一步” 层次存在脱钩基础, 需要为煤层的混合计算结构提供一些良好的特性, 特别是模拟理论显示, 每个交替的自动地图可以转换成一个类似的非确定性基础。 在此基础上, 我们证明, 完全固定点逻辑的林登理论, 其固定点的零碎和一步的碎片, 以及统一的国际化结果, 无论是完全的双向计算, 还是有用的无固定点的。 我们还提出了问题, 当存在脱钩基础时, 甚至模拟的逻辑结构可以被转换成相同的基础。 最后, 一个林登理论理论的理论基础, 提供了一个不透明的模型的模型, 提供了一个不透明的模型的模型的模型, 提供了一个完整的结构的模型的模型的模型, 提供了一个不规则的模型的模型的模型的模型。