Building upon the theory of Kalman Filtering on Lie Groups, this paper describes an Extended Kalman Filter and Smoother for Loosely Coupled Integration of GNSS/INS tailored for post-processing applications. The approach employs a dynamic model on a matrix Lie Group that aggregates position, velocity, attitude, and the IMU biases as a single element of a Lie group. The development was motivated by a drone-borne Differential Interferometric SAR (DinSAR) application, which requires high-precision navigation information for short-flight missions using low-cost MEMS sensors. The filter and the Rauch-Tung-Striebel (RTS) smoother are both implemented and validated. The paper also presents a novel algorithm to initialize the heading value as an alternative to gyro-compassing or magnetometer-based alignments. The Mahalanobis Distance and the $\chi^2$-test are employed during the filter update step to address the practical issue of outlier rejection for the GNSS measurements. The paper uses synthetic data to compare classic navigation schemes based on multiplicative quaternions and Euler angles. Finally, real data experiments demonstrate that the Kalman Filter based on Lie Groups performs better DinSAR processing than state-of-the-art commercial software.
翻译:本文以Liet Group的Kalman过滤法理论为基础,描述了用于后处理应用的全球导航卫星系统/INS的宽卡门过滤器和滑动器,该方法在矩阵 Lie Group上采用了一种动态模型,该模型将位置、速度、姿态和IMU偏向作为Lie Group的一个单一元素加以综合。开发的动机是无人机携带的不同干涉合成合成合成合成(DinsAR)应用,该应用要求使用低成本MEMS传感器对短程飞行任务提供高精度导航信息。过滤器和Rauch-Tung-Sriebel(RTS)光滑动器都得到实施和验证。本文还提出了一种新型算法,以初始化标题值,作为Gyro合成组合或磁强计组合的调整的单一要素。在过滤更新步骤期间使用了Mahalanobis距离和$\chi ⁇ 2的测试,以解决全球导航卫星系统测量中外部排斥的实际问题。该文件使用合成数据比较了基于多复制式四面和Euler-Slaebel角度的经典导航计划。最后,演示了基于Lial-Sara-Sara-Sara-Sara-Sara-lain的实际数据实验。