This paper proposes a novel active boundary loss for semantic segmentation. It can progressively encourage the alignment between predicted boundaries and ground-truth boundaries during end-to-end training, which is not explicitly enforced in commonly used cross-entropy loss. Based on the predicted boundaries detected from the segmentation results using current network parameters, we formulate the boundary alignment problem as a differentiable direction vector prediction problem to guide the movement of predicted boundaries in each iteration. Our loss is model-agnostic and can be plugged into the training of segmentation networks to improve the boundary details. Experimental results show that training with the active boundary loss can effectively improve the boundary F-score and mean Intersection-over-Union on challenging image and video object segmentation datasets.


翻译:本文建议对语义分解进行新的主动边界损失。 它可以逐步鼓励在端到端训练期间对预测边界和地面- 真实边界加以调整,而这种调整在常用的跨热带损失中没有得到明确执行。 根据利用现有网络参数从分解结果中检测到的预测边界,我们将边界调整问题作为一个不同的方向矢量预测问题,以指导每迭代中预测边界的移动。我们的损失是模型性,可以纳入分解网络的培训,以改进边界细节。实验结果显示,对实际边界损失进行的培训可以有效地改善边界的边界分界线和中度跨边界之间的差别,以便了解具有挑战性的图像和视频对象分解数据集。

1
下载
关闭预览

相关内容

专知会员服务
110+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
从R-CNN到Mask R-CNN
机器学习研究会
25+阅读 · 2017年11月13日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关VIP内容
专知会员服务
110+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Top
微信扫码咨询专知VIP会员