We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift coefficient of the homogenized equation requires pre-processing of the data, often in the form of subsampling; this is because the two-scale equation and the homogenized single-scale equation are incompatible at small scales, generating mutually singular measures on the path space. We avoid subsampling and work instead with filtered data, found by application of an appropriate kernel function, and compute maximum likelihood estimators based on the filtered process. We show that the estimators we propose are asymptotically unbiased and demonstrate numerically the advantages of our method with respect to subsampling. Finally, we show how our filtered data methodology can be combined with Bayesian techniques and provide a full uncertainty quantification of the inference procedure.
翻译:我们研究了两个尺度连续时间序列的漂移估计问题。 我们把自己设置在超标的 Langevin 方程式框架内,存在一个单一尺度的替代同质方程式。 在这种背景下,估算同质方程式的漂移系数需要预先处理数据,通常采取子抽样的形式; 这是因为两个尺度的方程式和同质单一尺度的方程式在小尺度上不兼容,在路径空间上产生相互独特的测量标准。 我们避免了子取样,而是使用通过应用适当的内核功能而发现的过滤数据,并计算了以过滤过程为基础的最大可能性估计数据。 我们表明,我们提议的估计方程式在使用子取样方法时是无差别的,并以数字方式展示了我们的方法在子取样方面的优势。 最后,我们展示了我们的过滤数据方法如何与巴伊西亚技术相结合,并提供了对推论程序的全面不确定性的量化。