For two probability measures $\rho$ and $\pi$ on $[-1,1]^{\mathbb{N}}$ we investigate the approximation of the triangular Knothe-Rosenblatt transport $T:[-1,1]^{\mathbb{N}}\to [-1,1]^{\mathbb{N}}$ that pushes forward $\rho$ to $\pi$. Under suitable assumptions, we show that $T$ can be approximated by rational functions without suffering from the curse of dimension. Our results are applicable to posterior measures arising in certain inference problems where the unknown belongs to an (infinite dimensional) Banach space. In particular, we show that it is possible to efficiently approximately sample from certain high-dimensional measures by transforming a lower-dimensional latent variable.


翻译:对于对$[1,1,%mathbb{N ⁇ ]的两种概率度量 $rho$和$pi$,我们调查三角Knothe-Rosenblatt运输的近似值:[1,1,%mathbb{N}至[1,1,%mathbb{N}}[1,1,1,1,%mathb{N$]。根据适当的假设,我们显示,在不受到维度诅咒的情况下,合理功能可以接近于$t$。我们的结果适用于某些推论问题产生的事后措施,在这些推论中,未知物属于(无限维度)Banach空间。特别是,我们表明,通过改变一个低维度的潜伏变量,可以有效地从某些高度测量中抽出大致的样本。

0
下载
关闭预览

相关内容

专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2018年11月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月27日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2018年11月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员