For two probability measures $\rho$ and $\pi$ on $[-1,1]^{\mathbb{N}}$ we investigate the approximation of the triangular Knothe-Rosenblatt transport $T:[-1,1]^{\mathbb{N}}\to [-1,1]^{\mathbb{N}}$ that pushes forward $\rho$ to $\pi$. Under suitable assumptions, we show that $T$ can be approximated by rational functions without suffering from the curse of dimension. Our results are applicable to posterior measures arising in certain inference problems where the unknown belongs to an (infinite dimensional) Banach space. In particular, we show that it is possible to efficiently approximately sample from certain high-dimensional measures by transforming a lower-dimensional latent variable.
翻译:对于对$[1,1,%mathbb{N ⁇ ]的两种概率度量 $rho$和$pi$,我们调查三角Knothe-Rosenblatt运输的近似值:[1,1,%mathbb{N}至[1,1,%mathbb{N}}[1,1,1,1,%mathb{N$]。根据适当的假设,我们显示,在不受到维度诅咒的情况下,合理功能可以接近于$t$。我们的结果适用于某些推论问题产生的事后措施,在这些推论中,未知物属于(无限维度)Banach空间。特别是,我们表明,通过改变一个低维度的潜伏变量,可以有效地从某些高度测量中抽出大致的样本。