For two probability measures $\rho$ and $\pi$ with analytic densities on the $d$-dimensional cube $[-1,1]^d$, we investigate the approximation of the unique triangular monotone Knothe-Rosenblatt transport $T:[-1,1]^d\to [-1,1]^d$, such that the pushforward $T_\sharp\rho$ equals $\pi$. It is shown that for $d\in\mathbb{N}$ there exist approximations $\tilde T$ of $T$, based on either sparse polynomial expansions or deep ReLU neural networks, such that the distance between $\tilde T_\sharp\rho$ and $\pi$ decreases exponentially. More precisely, we prove error bounds of the type $\exp(-\beta N^{1/d})$ (or $\exp(-\beta N^{1/(d+1)})$ for neural networks), where $N$ refers to the dimension of the ansatz space (or the size of the network) containing $\tilde T$; the notion of distance comprises the Hellinger distance, the total variation distance, the Wasserstein distance and the Kullback-Leibler divergence. Our construction guarantees $\tilde T$ to be a monotone triangular bijective transport on the hypercube $[-1,1]^d$. Analogous results hold for the inverse transport $S=T^{-1}$. The proofs are constructive, and we give an explicit a priori description of the ansatz space, which can be used for numerical implementations.


翻译:对于用分析密度测量美元[1,1,1,1美元]和美元美元这两个概率的美元和美元美元,我们调查了独有的三边单调Knothe-Rosenblatt运输的近似值$T:[1,1,1,1美元]至[1,1美元]至[1,1美元],这样推向 $T ⁇ sharrp\rho$等于$pi美元。显示,对于 $\ int\ inmathbrbrb{N} 来说, 内建网络的近似值$T$T$T, 内建的值值值为Taxlmlmexion$xlational, 内建域网的长度为Oxlxlxilxlal 的长度值,内建域网的长度,内建值为Oxlxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月20日
Arxiv
0+阅读 · 2021年9月27日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关资讯
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员