There are many different methods in the literature for local explanation of machine learning results. However, the methods differ in their approaches and often do not provide same explanations. In this paper, we consider two recent methods: Integrated Gradients (Sundararajan, Taly, & Yan, 2017) and Baseline Shapley (Sundararajan and Najmi, 2020). The original authors have already studied the axiomatic properties of the two methods and provided some comparisons. Our work provides some additional insights on their comparative behavior for tabular data. We discuss common situations where the two provide identical explanations and where they differ. We also use simulation studies to examine the differences when neural networks with ReLU activation function is used to fit the models.
翻译:在文献中,对机器学习结果进行当地解释的方法多种多样,但方法不同,往往不提供相同的解释。在本文中,我们考虑了两种最新方法:综合梯度(Sundararajan, Taly, & Yan, 2017年)和基线Shapley(Sundararajan和Najmi,2020年)。原始作者已经研究了这两种方法的不言而喻特性,并提供了一些比较。我们的工作为表格数据的比较行为提供了一些额外的见解。我们讨论了两种方法提供相同的解释和不同解释的常见情况。我们还利用模拟研究来研究使用神经网络与雷卢激活功能的差别,以适应模型。