The Multilingual Semantic Web has been in focus for over a decade. Multilingualism in Linked Data and RDF has shown substantial adoption, but this is unclear for ontologies since the last review 15 years ago. One of the design goals for OWL was internationalisation, with the aim that an ontology is usable across languages and cultures. Much research to improve on multilingual ontologies has taken place in the meantime, and presumably multilingual linked data could use multilingual ontologies. Therefore, this review seeks to (i) elucidate and compare the modelling options for multilingual ontologies, (ii) examine extant ontologies for their multilingualism, and (iii) evaluate ontology editors for their ability to manage a multilingual ontology. Nine different principal approaches for modelling multilinguality in ontologies were identified, which fall into either of the following approaches: using multilingual labels, linguistic models, or a mapping-based approach. They are compared on design by means of an ad hoc visualisation mode of modelling multilingual information for ontologies, shortcomings, and what issues they aim to solve. For the ontologies, we extracted production-level and accessible ontologies from BioPortal and the LOV repositories, which had, at best, 6.77% and 15.74% multilingual ontologies, respectively, where most of them have only partial translations and they all use a labels-based approach only. Based on a set of nine tool requirements for managing multilingual ontologies, the assessment of seven relevant ontology editors showed that there are significant gaps in tooling support, with VocBench 3 nearest of meeting them all. This stock-taking may function as a new baseline and motivate new research directions for multilingual ontologies.


翻译:多语言语义网十多年来一直关注多语言语义网络。 链接数据和RDF中的多语种网络显示大量采用,但自15年前的上次审查以来,对本源学来说,这一点并不清楚。 OWL的设计目标之一是国际化,目的是让本源学在各种语言和文化之间都能使用。与此同时,开展了许多研究,以改进多语言本源学,而且可能多语种链接数据可以使用多语言本源。因此,本审查力求:(一) 阐明和比较多语言本库学的多语种模型选项,(二) 研究其多种语言本库学的存余性,(三) 评估其管理多语种本学的能力。OWLOL的设计目标之一是国际化,目的是要将本源的多语种性建模用于不同语言和文化。 采用多种语言标签、语言模型或基于地图的新方法,这些方法在设计上仅使用一种临时可视化的多语种信息模型模式,用于本源、缺陷以及他们要解决的问题。 对于本库学、我们所选取的最接近的版本和最接近的版本的版本的版本的版本, 都用于在BOFIDE、我们所选取的版本和最接近的版本和最接近的版本的版本的版本和最接近的版本的版本的版本。

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员