We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies. The problem is formalized as finding dominant model instances progressively without forming crisp point-to-model assignments. Dominant instances are found via a RANSAC-like sampling and a consolidation process driven by a model quality function considering previously proposed instances. New ones are found by clustering in the consensus space. This new formulation leads to a simple iterative algorithm with state-of-the-art accuracy while running in real-time on a number of vision problems - at least two orders of magnitude faster than the competitors on two-view motion estimation. Also, we propose a deterministic sampler reflecting the fact that real-world data tend to form spatially coherent structures. The sampler returns connected components in a progressively densified neighborhood-graph. We present a number of applications where the use of multiple geometric models improves accuracy. These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects; and we also propose a way of using multiple homographies in global SfM algorithms. Source code: https://github.com/danini/clustering-in-consensus-space.
翻译:我们提出了一种用于找到未知数量的几何模型(例如,单应性变换)的新算法。该问题被形式化为在不进行确定性点到模型分配的情况下逐渐找到主要的模型实例。主要实例通过类似于RANSAC的采样和由考虑之前提议的实例的模型质量函数驱动的合并过程来发现。新实例通过在共识空间中进行聚类来发现。这种新的形式化方法会导致一个简单的迭代算法,其精度达到了最先进的水平,同时在许多视觉问题上以实时运行 - 在两视图运动估计中比竞争对手快两个数量级。此外,我们提出了一种确定性采样器,反映了现实世界数据往往形成空间连贯结构的事实。采样器返回在逐渐增加的邻域图中的连通分量。我们提出了许多应用程序,其中使用多个几何模型可以提高准确性。这些包括从多个广义单应变换中估计姿态;快速运动物体的轨迹估计;我们还提出了一种在全局SfM算法中使用多个单应性变换的方法。源代码:https://github.com/danini/clustering-in-consensus-space。