Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
翻译:模拟模型是模型,其可能性难以捉摸,但模拟合成数据是可能的,通常用来描述复杂的现实世界现象,因此在实践中往往被错误描述。不幸的是,目前巴耶斯模拟器的模拟器方法在这些例子中表现不佳。在本文中,我们建议一种基于后靴靴陷阱和最大平均差异估计器的新式算法。这导致一种高度平行的贝耶斯推断算法,具有很强的强健性。这通过深入的理论研究得到证明,其中包括概括性界限和证明我们后座的常态一致性和稳健性的证据。然后,根据一系列例子评估这一方法,包括一个g-k分布和一个千格切转换模型。