Math Word Problems (MWP) is an important task that requires the ability of understanding and reasoning over mathematical text. Existing approaches mostly formalize it as a generation task by adopting Seq2Seq or Seq2Tree models to encode an input math problem in natural language as a global representation and generate the output mathematical expression. Such approaches only learn shallow heuristics and fail to capture fine-grained variations in inputs. In this paper, we propose to model a math word problem in a fine-to-coarse manner to capture both the local fine-grained information and the global logical structure of it. Instead of generating a complete equation sequence or expression tree from the global features, we iteratively combine low-level operands to predict a higher-level operator, abstracting the problem and reasoning about the solving operators from bottom to up. Our model is naturally more sensitive to local variations and can better generalize to unseen problem types. Extensive evaluations on Math23k and SVAMP datasets demonstrate the accuracy and robustness of our method.
翻译:数学文字问题(MWP)是一项重要任务,需要能够理解和推理数学文本。 现有的方法大多通过采用 Seq2Seq或Seq2Tree 模型将数学输入问题编码成一种以自然语言作为全球代表和生成输出数学表达方式的数学输入问题, 而将其正式化为一代人的任务。 这种方法只学习浅色的杂技学, 无法捕捉投入的细微差异。 在本文中, 我们提议以细到粗的方式模拟数学词问题, 以捕捉本地精密信息及其全球逻辑结构。 我们不用从全球特征生成完整的等式序列或表达树,而是反复地将低层次的操作器组合起来, 预测一个更高层次的操作器, 抽象问题, 并推理从下到上解决操作器的问题。 我们的模型自然对本地变异性更加敏感, 并且可以更好地概括不可见的问题类型。 对 Math23k 和 SVAMP 数据集进行广泛的评估, 显示了我们的方法的准确性和稳健。