Detecting Human-Object Interaction (HOI) in images is an important step towards high-level visual comprehension. Existing work often shed light on improving either human and object detection, or interaction recognition. However, due to the limitation of datasets, these methods tend to fit well on frequent interactions conditioned on the detected objects, yet largely ignoring the rare ones, which is referred to as the object bias problem in this paper. In this work, we for the first time, uncover the problem from two aspects: unbalanced interaction distribution and biased model learning. To overcome the object bias problem, we propose a novel plug-and-play Object-wise Debiasing Memory (ODM) method for re-balancing the distribution of interactions under detected objects. Equipped with carefully designed read and write strategies, the proposed ODM allows rare interaction instances to be more frequently sampled for training, thereby alleviating the object bias induced by the unbalanced interaction distribution. We apply this method to three advanced baselines and conduct experiments on the HICO-DET and HOI-COCO datasets. To quantitatively study the object bias problem, we advocate a new protocol for evaluating model performance. As demonstrated in the experimental results, our method brings consistent and significant improvements over baselines, especially on rare interactions under each object. In addition, when evaluating under the conventional standard setting, our method achieves new state-of-the-art on the two benchmarks.
翻译:在图像中检测人体和物体的相互作用(HOI)是迈向高层次视觉理解的一个重要步骤。现有的工作往往在改进人和物体的探测或互动识别方面揭示出新的插座和播放功能,然而,由于数据集的局限性,这些方法往往适合以被检测到的物体为条件的频繁互动,但基本上忽略了稀有的相互作用,在本文中被称为对象偏差问题。在这项工作中,我们第一次从两个方面发现了问题:互动分布不平衡和有偏差的模型学习。为了克服对象偏差问题,我们建议采用新的插座和播放对象偏差内存(ODM)方法来重新平衡在被检测到的物体下进行的互动分布。在精心设计的读写战略下,提议的ODM使极少的相互作用案例能够更经常地抽样用于培训,从而减轻因互动分布不平衡而导致的物体偏差问题。我们第一次将这种方法应用于三个先进的基线,并对HICO-DET和HOI-CO数据集进行实验。为了对对象偏差问题进行定量研究,我们提倡一种对对象偏差记忆的内反偏差记忆(OMM)重新平衡内重新平衡的内,我们用新的选择一种新的程序来重新平衡分配,我们用新的程序来评估标准的改进。在每一个标准下,在评估新的标准下,我们的标准下,在评估新的标准下,在评估新的标准下,我们的标准下进行新的标准上都显示新的程序。