We elucidate why an interval algorithm that computes the exact bounds on the amplitude and phase of the discrete Fourier transform can run in polynomial time. We address this question from a formal perspective to provide the mathematical foundations underpinning such an algorithm. We show that the procedure set out by the algorithm fully addresses the dependency problem of interval arithmetic, making it usable in a variety of applications involving the discrete Fourier transform. For example when analysing signals with poor precision, signals with missing data, and for automatic error propagation and verified computations.
翻译:我们解释为什么计算离散Fourier变异的振幅和阶段的精确界限的间隙算法可以在多元时间运行。 我们从正式的角度处理这个问题, 以提供支持这种算法的数学基础。 我们证明算法规定的程序充分解决了间距算术的依赖性问题, 使它可用于涉及离散Fourier变异的各种应用。 例如, 当分析信号时, 精确度低, 缺少数据的信号, 以及自动错误传播和校验计算时 。