This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the compositional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach.
翻译:本文件介绍了一种核实在网络物理安全临界系统中发现的非线性人工神经网络行为的方法。我们为SMT求解器iSAT中的小类功能设置了专用的间隙调节器,并将这一方法与一种组成方法进行比较,该方法通过iSAT中的基本算术特征和近似方法对小类功能进行编码。我们的实验结果表明,专门和组成方法明显地超过了相似的方法。在我们的所有基准中,专门方法显示出与组成方法相比的相同性能或更好性能。