We propose new simultaneous inference methods for diagnostic trials with elaborate factorial designs. Instead of the commonly used total area under the receiver operating characteristic (ROC) curve, our parameters of interest are partial areas under ROC curve segments that represent clinically relevant biomarker cut-off values. We construct a nonparametric multiple contrast test for these parameters and show that it asymptotically controls the family-wise type one error rate. Finite sample properties of this test are investigated in a series of computer experiments. We provide empirical and theoretical evidence supporting the conjecture that statistical inference about partial areas under ROC curves is more efficient than inference about the total areas.
翻译:我们建议采用新的同时推断方法进行精密因素设计诊断试验。我们感兴趣的参数不是接收器操作特征曲线下常用的总区域,而是代表临床相关生物标志截断值的RC曲线段下的部分区域。我们对这些参数进行非参数性多重对比测试,并表明它不同时控制家庭错差率。在一系列计算机实验中调查了这一测试的微量样本特性。我们提供了经验和理论证据,支持这样的推测,即对OC曲线下部分区域的统计推论比对总区域的推论更有效。