In crowd evacuation the time interval before decisive movement towards a safe place is defined as the pre-evacuation phase, and it has crucial impact on the total time required for safe egress. This process mainly refers to situation awareness and response to an external stressors, e.g., fire alarms. Due to the complexity of human cognitive process, simulation is used to study this important time interval. In this paper a binary decision process is formulated to simulate pre-evacuation time of many evacuees in a given social context. The model combines the classic opinion dynamics (the French-DeGroot model) with binary phase transition to describe how group pre-evacuation time emerges from individual interaction. The model parameters are quantitatively meaningful to human factors research within socio-psychological background, e.g., whether an individual is stubborn or open-minded, or what kind of the social topology exists among the individuals and how it matters in aggregating individuals into social groups. The modeling framework also describes collective motion of many evacuee agents in a planar space, and the resulting multi-agent system is partly similar to the Vicsek flocking model, and it is meaningful to explore complex social behavior during phase transition of a non-equilibrium process.
翻译:暂无翻译